- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hopkins, Philip F (2)
-
Offner, Stella_S R (2)
-
Grudic, Michael Y (1)
-
Grudić, Michael Y (1)
-
Guszejnov, David (1)
-
Guszejnov, Dávid (1)
-
Gutermuth, Robert (1)
-
Kremer, Kyle (1)
-
Rosen, Anna L (1)
-
Xu, Duo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recently, we demonstrated self-consistent formation of strongly-magnetized quasar accretion disks (QADs) from cosmological radiation-magnetohydrodynamic-thermochemical galaxy-star formation simulations, including the full STARFORGE physics shown previously to produce a reasonable IMF under typical ISM conditions. Here we study star formation and the stellar IMF in QADs, on scales from 100 au to 10 pc from the SMBH. We show it is critical to include physics often previously neglected, including magnetic fields, radiation, and (proto)stellar feedback. Closer to the SMBH, star formation is suppressed, but the (rare) stars that do form exhibit top-heavy IMFs. Stars can form only in special locations (e.g. magnetic field switches) in the outer QAD. Protostars accrete their natal cores rapidly but then dynamically decouple from the gas and ‘wander,’ ceasing accretion on timescales ~100 yr. Their jets control initial core accretion, but the ejecta are ‘swept up’ into the larger-scale QAD flow without much dynamical effect. The strong tidal environment strongly suppresses common-core multiplicity. The IMF shape depends sensitively on un-resolved dynamics of protostellar disks (PSDs), as the global dynamical times can become incredibly short (< yr) and tidal fields are incredibly strong, so whether PSDs can efficiently transport angular momentum or fragment catastrophically at <10 au scales requires novel PSD simulations to properly address. Most analytic IMF models and analogies with planet formation in PSDs fail qualitatively to explain the simulation IMFs, though we discuss a couple of viable models.more » « less
-
Xu, Duo; Offner, Stella_S R; Gutermuth, Robert; Grudić, Michael Y; Guszejnov, Dávid; Hopkins, Philip F (, The Astrophysical Journal)Abstract Accurately quantifying the impact of radiation feedback in star formation is challenging. To address this complex problem, we employ deep-learning techniques known as denoising diffusion probabilistic models (DDPMs) to predict the interstellar radiation field (ISRF) strength based on three-band dust emission at 4.5, 24, and 250μm. We adopt magnetohydrodynamic simulations from the STARFORGE project that model star formation and giant molecular cloud (GMC) evolution. We generate synthetic dust emission maps matching observed spectral energy distributions in the Monoceros R2 (MonR2) GMC. We train DDPMs to estimate the ISRF using synthetic three-band dust emission. The dispersion between the predictions and true values is within a factor of 0.1 for the test set. We extended our assessment of the diffusion model to include new simulations with varying physical parameters. While there is a consistent offset observed in these out-of-distribution simulations, the model effectively constrains the relative intensity to within a factor of 2. Meanwhile, our analysis reveals a weak correlation between the ISRF solely derived from dust temperature and the actual ISRF. We apply our trained model to predict the ISRF in MonR2, revealing a correspondence between intense ISRF, bright sources, and high dust emission, confirming the model’s ability to capture ISRF variations. Our model robustly predicts radiation feedback distribution, even in complex, poorly constrained ISRF environments like those influenced by nearby star clusters. However, precise ISRF predictions require an accurate training data set mirroring the target molecular cloud’s unique physical conditions.more » « less
An official website of the United States government
